The Selfish Gene Page 4
Should we then call the original replicator molecules 'living'? Who cares? I might say to you 'Darwin was the greatest man who has ever lived', and you might say 'No, Newton was', but I hope we would not prolong the argument. The point is that no conclusion of substance would be affected whichever way our argument was resolved. The facts of the lives and achievements of Newton and Darwin remain totally unchanged whether we label them 'great' or not. Similarly, the story of the replicator molecules probably happened something like the way I am telling it, regardless of whether we choose to call them 'Iiving'. Human suffering has been caused because too many of us cannot grasp that words are only tools for our use, and that the mere presence in the dictionary of a word like 'living' does not mean it necessarily has to refer to something definite in the real world. Whether we call the early replicators living or not, they were the ancestors of life; they were our founding fathers.
The next important link in the argument, one that Darwin himself laid stress on (although he was talking about animals and plants, not molecules) is competition. The primeval soup was not capable of supporting an infinite number of replicator molecules. For one thing, the earth's size is finite, but other limiting factors must also have been important. In our picture of the replicator acting as a template or mould, we supposed it to be bathed in a soup rich in the small building block molecules necessary to make copies. But when the replicators became numerous, building blocks must have been used up at such a rate that they became a scarce and precious resource. Different varieties or strains of replicator must have competed for them. We have considered the factors that would have increased the numbers of favoured kinds of replicator. We can now see that less-favoured varieties must actually have become less numerous because of competition, and ultimately many of their lines must have gone extinct. There was a struggle for existence among replicator varieties. They did not know they were struggling, or worry about it; the struggle was conducted without any hard feelings, indeed without feelings of any kind. But they were struggling, in the sense that any mis-copying that resulted in a new higher level of stability, or a new way of reducing the stability of rivals, was automatically preserved and multiplied. The process of improvement was cumulative. Ways of increasing stability and of decreasing rivals' stability became more elaborate and more efficient. Some of them may even have 'discovered' how to break up molecules of rival varieties chemically, and to use the building blocks so released for making their own copies. These proto-carnivores simultaneously obtained food and removed competing rivals. Other replicators perhaps discovered how to protect themselves, either chemically, or by building a physical wall of protein around themselves. This may have been how the first living cells appeared. Replicators began not merely to exist, but to construct for themselves containers, vehicles for their continued existence. The replicators that survived were the ones that built survival machines for themselves to live in. The first survival machines probably consisted of nothing more than a protective coat. But making a living got steadily harder as new rivals arose with better and more effective survival machines. Survival machines got bigger and more elaborate, and the process was cumulative and progressive.
Was there to be any end to the gradual improvement in the techniques and artifices used by the replicators to ensure their own continuation in the world? There would be plenty of time for improvement. What weird engines of self-preservation would the millennia bring forth? Four thousand million years on, what was to be the fate of the ancient replicators? They did not die out, for they are past masters of the survival arts. But do not look for them floating loose in the sea; they gave up that cavalier freedom long ago. Now they swarm in huge colonies, safe inside gigantic lumbering robots, sealed off from the outside world, communicating with it by tortuous indirect routes, manipulating it by remote control. They are in you and in me; they created us, body and mind; and their preservation is the ultimate rationale for our existence. They have come a long way, those replicators. Now they go by the name of genes, and we are their survival machines.
Immortal coils
We are survival machines, but 'we' does not mean just people. It embraces all animals, plants, bacteria, and viruses. The total number of survival machines on earth is very difficult to count and even the total number of species is unknown. Taking just insects alone, the number of living species has been estimated at around three million, and the number of individual insects may be a million million million.
Different sorts of survival machine appear very varied on the outside and in their internal organs. An octopus is nothing like a mouse, and both are quite different from an oak tree. Yet in their fundamental chemistry they are rather uniform, and, in particular, the replicators that they bear, the genes, are basically the same kind of molecule in all of us-from bacteria to elephants. We are all survival machines for the same kind of replicator-molecules called DNA-but there are many different ways of making a living in the world, and the replicators have built a vast range of machines to exploit them. A monkey is a machine that preserves genes up trees, a fish is a machine that preserves genes in the water; there is even a small worm that preserves genes in German beer mats. DNA works in mysterious ways.
For simplicity I have given the impression that modern genes, made of DNA, are much the same as the first replicators in the primeval soup. It does not matter for the argument, but this may not really be true. The original replicators may have been a related kind of molecule to DNA, or they may have been totally different. In the latter case we might say that their survival machines must have been seized at a later stage by DNA. If so, the original replicators were utterly destroyed, for no trace of them remains in modern survival machines. Along these lines, A. G. Cairns-Smith has made the intriguing suggestion that our ancestors, the first replicators, may have been not organic molecules at all, but inorganic crystals- minerals, little bits of clay. Usurper or not, DNA is in undisputed charge today, unless, as I tentatively suggest in Chapter 11, a new seizure of power is now just beginning.
A DNA molecule is a long chain of building blocks, small molecules called nucleotides. Just as protein molecules are chains of amino acids, so DNA molecules are chains of nucleotides. A DNA molecule is too small to be seen, but its exact shape has been ingeniously worked out by indirect means. It consists of a pair of nucleotide chains twisted together in an elegant spiral; the 'double helix'; the 'immortal coil'. The nucleotide building blocks come in only four different kinds, whose names may be shortened to A, T, C, and G. These are the same in all animals and plants. What differs is the order in which they are strung together. A G building block from a man is identical in every particular to a G building block from a snail. But the sequence of building blocks in a man is not only different from that in a snail. It is also different-though less so-from the sequence in every other man (except in the special case of identical twins).
Our DNA lives inside our bodies. It is not concentrated in a particular part of the body, but is distributed among the cells. There are about a thousand million million cells making up an average human body, and, with some exceptions which we can ignore, every one of those cells contains a complete copy of that body's DNA. This DNA can be regarded as a set of instructions for how to make a body, written in the A, T, C, G alphabet of the nucleotides. It is as though, in every room of a gigantic building, there was a book-case containing the architect's plans for the entire building. The 'book-case' in a cell is called the nucleus. The architect's plans run to 46 volumes in man-the number is different in other species. The 'volumes' are called chromosomes. They are visible under a microscope as long threads, and the genes are strung out along them in order. It is not easy, indeed it may not even be meaningful, to decide where one gene ends and the next one begins. Fortunately, as this chapter will show, this does not matter for our purposes.
I shall make use of the metaphor of the architect's plans, freely mixing the language of the metaphor with the language of the real thing. 'Volume' wil
l be used interchangeably with chromosome. 'Page' will provisionally be used interchangeably with gene, although the division between genes is less clear-cut than the division between the pages of a book. This metaphor will take us quite a long way.
When it finally breaks down I shall introduce other metaphors. Incidentally, there is of course no 'architect'. The DNA instructions have been assembled by natural selection.
DNA molecules do two important things. Firstly they replicate, that is to say they make copies of themselves. This has gone on nonstop ever since the beginning of life, and the DNA molecules are now very good at it indeed. As an adult, you consist of a thousand million million cells, but when you were first conceived you were just a single cell, endowed with one master copy of the architect's plans. This cell divided into two, and each of the two cells received its own copy of the plans. Successive divisions took the number of cells up to 4, 8, 16, 32, and so on into the billions. At every division the DNA plans were faithfully copied, with scarcely any mistakes.
It is one thing to speak of the duplication of DNA. But if the DNA is really a set of plans for building a body, how are the plans put into practice? How are they translated into the fabric of the body? This brings me to the second important thing DNA does. It indirectly supervises the manufacture of a different kind of molecule-protein. The haemoglobin which was mentioned in the last chapter is just one example of the enormous range of protein molecules. The coded message of the DNA, written in the four-letter nucleotide alphabet, is translated in a simple mechanical way into another alphabet. This is the alphabet of amino acids which spells out protein molecules.
Making proteins may seem a far cry from making a body, but it is the first small step in that direction. Proteins not only constitute much of the physical fabric of the body; they also exert sensitive control over all the chemical processes inside the cell, selectively turning them on and off at precise times and in precise places. Exactly how this eventually leads to the development of a baby is a story which it will take decades, perhaps centuries, for embryologists to work out. But it is a fact that it does. Genes do indirectly control the manufacture of bodies, and the influence is strictly one way: acquired characteristics are not inherited. No matter how much knowledge and wisdom you acquire during your life, not one jot will be passed on to your children by genetic means. Each new generation starts from scratch. A body is the genes' way of preserving the genes unaltered.
The evolutionary importance of the fact that genes control embryonic development is this: it means that genes are at least partly responsible for their own survival in the future, because their survival depends on the efficiency of the bodies in which they live and which they helped to build. Once upon a time, natural selection consisted of the differential survival of replicators floating free in the primeval soup. Now, natural selection favours replicators that are good at building survival machines, genes that are skilled in the art of controlling embryonic development. In this, the replicators are no more conscious or purposeful than they ever were. The same old processes of automatic selection between rival molecules by reason of their longevity, fecundity, and copying-fidelity, still go on as blindly and as inevitably as they did in the far-off days. Genes have no foresight. They do not plan ahead. Genes just are, some genes more so than others, and that is all there is to it. But the qualities that determine a gene's longevity and fecundity are not so simple as they were. Not by a long way.
In recent years-the last six hundred million or so-the replicators have achieved notable triumphs of survival-machine technology such as the muscle, the heart, and the eye (evolved several times independently). Before that, they radically altered fundamental features of their way of life as replicators, which must be understood if we are to proceed with the argument.
The first thing to grasp about a modern replicator is that it is highly gregarious. A survival machine is a vehicle containing not just one gene but many thousands. The manufacture of a body is a cooperative venture of such intricacy that it is almost impossible to disentangle the contribution of one gene from that of another. A given gene will have many different effects on quite different parts of the body. A given part of the body will be influenced by many genes, and the effect of any one gene depends on interaction with many others. Some genes act as master genes controlling the operation of a cluster of other genes. In terms of the analogy, any given page of the plans makes reference to many different parts of the building; and each page makes sense only in terms of cross-references to numerous other pages.
This intricate inter-dependence of genes may make you wonder why we use the word 'gene' at all. Why not use a collective noun like 'gene complex'? The answer is that for many purposes that is indeed quite a good idea. But if we look at things in another way, it does make sense too to think of the gene complex as being divided up into discrete replicators or genes. This arises because of the phenomenon of sex. Sexual reproduction has the effect of mixing and shuffling genes. This means that any one individual body is just a temporary vehicle for a short-lived combination of genes. The combination of genes that is any one individual may be short-lived, but the genes themselves are potentially very long-lived. Their paths constantly cross and recross down the generations. One gene maybe regarded as a unit that survives through a large number of successive individual bodies. This is the central argument that will be developed in this chapter. It is an argument that some of my most respected colleagues obstinately refuse to agree with, so you must forgive me if I seem to labour it! First I must briefly explain the facts of sex.
I said that the plans for building a human body are spelt out in 46 volumes. In fact this was an over-simplification. The truth is rather bizarre. The 46 chromosomes consist of 23 pairs of chromosomes. We might say that, filed away in the nucleus of every cell, are two alternative sets of 23 volumes of plans. Call them Volume 1a and 1b, Volume 2a and Volume 2b etc., down to Volume 23a and Volume 23b. Of course the identifying numbers I use for volumes and, later, pages, are purely arbitrary.
We receive each chromosome intact from one of our two parents, in whose testis or ovary it was assembled. Volumes 1a, 2a, 3a, ... came, say, from the father. Volumes 1b, 2b, 3b,... came from the mother. It is very difficult in practice, but in theory you could look with a microscope at the 46 chromosomes in any one of your cells, and pick out the 23 that came from your father and the 23 that came from your mother.
The paired chromosomes do not spend all their lives physically in contact with each other, or even near each other. In what sense then are they 'paired'? In the sense that each volume coming originally from the father can be regarded, page for page, as a direct alternative to one particular volume coming originally from the mother. For instance, Page 6 of Volume 13a and Page 6 of Volume 13b might both be 'about' eye colour; perhaps one says 'blue' while the other says 'brown'.
Sometimes the two alternative pages are identical, but in other cases, as in our example of eye colour, they differ. If they make contradictory 'recommendations', what does the body do? The answer varies. Sometimes one reading prevails over the other. In the eye colour example just given, the person would actually have brown eyes: the instructions for making blue eyes would be ignored in the building of the body, though this does not stop them being passed on to future generations. A gene that is ignored in this way is called recessive. The opposite of a recessive gene is a dominant gene. The gene for brown eyes is dominant to the gene for blue eyes. A person has blue eyes only if both copies of the relevant page are unanimous in recommending blue eyes. More usually when two alternative genes are not identical, the result is some kind of compromise-the body is built to an intermediate design or something completely different.
When two genes, like the brown eye and the blue eye gene, are rivals for the same slot on a chromosome, they are called alleles of each other. For our purposes, the word allele is synonymous with rival. Imagine the volumes of architects' plans as being loose-leaf binders, whose pages can be detached an
d interchanged. Every Volume 13 must have a Page 6, but there are several possible Page 6s which could go in the binder between Page 5 and Page 7. One version says 'blue eyes', another possible version says 'brown eyes'; there may be yet other versions in the population at large which spell out other colours like green. Perhaps there are half a dozen alternative alleles sitting in the Page 6 position on the 13 th chromosomes scattered around the population as a whole. Any given person only has two Volume 13 chromosomes. Therefore he can have a maximum of two alleles in the Page 6 slot. He may, like a blue-eyed person, have two copies of the same allele, or he may have any two alleles chosen from the half dozen alternatives available in the population at large.
You cannot, of course, literally go and choose your genes from a pool of genes available to the whole population. At any given time all the genes are tied up inside individual survival machines. Our genes are doled out to us at conception, and there is nothing we can do about this. Nevertheless, there is a sense in which, in the long term, the genes of the population in general can be regarded as a gene pool. This phrase is in fact a technical term used by geneticists. The gene pool is a worthwhile abstraction because sex mixes genes up, albeit in a carefully organized way. In particular, something like the detaching and interchanging of pages and wads of pages from loose-leaf binders really does go on, as we shall presently see.
I have described the normal division of a cell into two new cells, each one receiving a complete copy of all 46 chromosomes. This normal cell division is called mitosis. But there is another kind of cell division called meiosis. This occurs only in the production of the sex cells; the sperms or eggs. Sperms and eggs are unique among our cells in that, instead of containing 46 chromosomes, they contain only 23. This is, of course, exactly half of 46-convenient when they fuse in sexual fertilization to make a new individual! Meiosis is a special kind of cell division, taking place only in testicles and ovaries, in which a cell with the full double set of 46 chromosomes divides to form sex cells with the single set of 23 (all the time using the human numbers for illustration).