Free Novel Read

The Selfish Gene Page 3


  The muddle in human ethics over the level at which altruism is desirable-family, nation, race, species, or all living tilings-is mirrored by a parallel muddle in biology over the level at which altruism is to be expected according to the theory of evolution. Even the group-selectionist would not be surprised to find members of rival groups being nasty to each other: in this way, like trade unionists or soldiers, they are favouring their own group in the struggle for limited resources. But then it is worth asking how the group-selectionist decides which level is the important one. If selection goes on between groups within a species, and between species, why should it not also go on between larger groupings? Species are grouped together into genera, genera into orders, and orders into classes. Lions and antelopes are both members of the class Mammalia, as are we. Should we then not expect lions to refrain from killing antelopes, 'for the good of the mammals'? Surely they should hunt birds or reptiles instead, in order to prevent the extinction of the class. But then, what of the need to perpetuate the whole phylum of vertebrates?

  It is all very well for me to argue by reductio ad absurdum, and to point to the difficulties of the group-selection theory, but the apparent existence of individual altruism still has to be explained. Ardrey goes so far as to say that group selection is the only possible explanation for behaviour such as 'storting' in Thomson's gazelles. This vigorous and conspicuous leaping in front of a predator is analogous to bird alarm calls, in that it seems to warn companions of danger while apparently calling the predator's attention to the stotter himself. We have a responsibility to explain stotting Tommies and all similar phenomena, and this is something I am going to face in later chapters.

  Before that I must argue for my belief that the best way to look at evolution is in terms of selection occurring at the lowest level of all. In this belief I am heavily influenced by G. C. Williams's great book Adaptation and Natural Selection. The central idea I shall make use of was foreshadowed by A. Weismann in pre-gene days at the turn of the century-his doctrine of the 'continuity of the germ-plasm'. I shall argue that the fundamental unit of selection, and therefore of self-interest, is not the species, nor the group, nor even, strictly, the individual. It is the gene, the unit of heredity. To some biologists this may sound at first like an extreme view. I hope when they see in what sense I mean it they will agree that it is, in substance, orthodox, even if it is expressed in an unfamiliar way. The argument takes time to develop, and we must begin at the beginning, with the very origin of life itself.

  The replicators

  In the beginning was simplicity. It is difficult enough explaining how even a simple universe began. I take it as agreed that it would be even harder to explain the sudden springing up, fully armed, of complex order-life, or a being capable of creating life. Darwin's theory of evolution by natural selection is satisfying because it shows us a way in which simplicity could change into complexity, how unordered atoms could group themselves into ever more complex patterns until they ended up manufacturing people. Darwin provides a solution, the only feasible one so far suggested, to the deep problem of our existence. I will try to explain the great theory in a more general way than is customary, beginning with the time before evolution itself began.

  Darwin's 'survival of the fittest' is really a special case of a more general law of survival of the stable. The universe is populated by stable things. A stable thing is a collection of atoms that is permanent enough or common enough to deserve a name. It may be a unique collection of atoms, such as the Matterhorn, that lasts long enough to be worth naming. Or it may be a class of entities, such as rain drops, that come into existence at a sufficiently high rate to deserve a collective name, even if any one of them is short-lived. The things that we see around us, and which we think of as needing explanation-rocks, galaxies, ocean waves-are all, to a greater or lesser extent, stable patterns of atoms. Soap bubbles tend to be spherical because this is a stable configuration for thin films filled with gas. In a spacecraft, water is also stable in spherical globules, but on earth, where there is gravity, the stable surface for standing water is flat and horizontal. Salt crystals tend to be cubes because this is a stable way of packing sodium and chloride ions together. In the sun the simplest atoms of all, hydrogen atoms, are fusing to form helium atoms, because in the conditions that prevail there the helium configuration is more stable. Other even more complex atoms are being formed in stars all over the universe, ever since soon after the 'big bang' which, according to the prevailing theory, initiated the universe. This is originally where the elements on our world came from.

  Sometimes when atoms meet they link up together in chemical reaction to form molecules, which may be more or less stable. Such molecules can be very large. A crystal such as a diamond can be regarded as a single molecule, a proverbially stable one in this case, but also a very simple one since its internal atomic structure is endlessly repeated. In modern living organisms there are other large molecules which are highly complex, and their complexity shows itself on several levels. The haemoglobin of our blood is a typical protein molecule. It is built up from chains of smaller molecules, amino acids, each containing a few dozen atoms arranged in a precise pattern. In the haemoglobin molecule there are 574 amino acid molecules. These are arranged in four chains, which twist around each other to form a globular three-dimensional structure of bewildering complexity. A model of a haemoglobin molecule looks rather like a dense thornbush. But unlike a real thornbush it is not a haphazard approximate pattern but a definite invariant structure, identically repeated, with not a twig nor a twist out of place, over six thousand million million million times in an average human body. The precise thornbush shape of a protein molecule such as haemoglobin is stable in the sense that two chains consisting of the same sequences of amino acids will tend, like two springs, to come to rest in exactly the same three-dimensional coiled pattern. Haemoglobin thornbushes are springing into their 'preferred' shape in your body at a rate of about four hundred million million per second, and others are being destroyed at the same rate.

  Haemoglobin is a modern molecule, used to illustrate the principle that atoms tend to fall into stable patterns. The point that is relevant here is that, before the coming of life on earth, some rudimentary evolution of molecules could have occurred by ordinary processes of physics and chemistry. There is no need to think of design or purpose or directedness. If a group of atoms in the presence of energy falls into a stable pattern it will tend to stay that way. The earliest form of natural selection was simply a selection of stable forms and a rejection of unstable ones. There is no mystery about this. It had to happen by definition.

  From this, of course, it does not follow that you can explain the existence of entities as complex as man by exactly the same principles on their own. It is no good taking the right number of atoms and shaking them together with some external energy till they happen to fall into the right pattern, and out drops Adam! You may make a molecule consisting of a few dozen atoms like that, but a man consists of over a thousand million million million million atoms. To try to make a man, you would have to work at your biochemical cocktail-shaker for a period so long that the entire age of the universe would seem like an eye-blink, and even then you would not succeed. This is where Darwin's theory, in its most general form, comes to the rescue. Darwin's theory takes over from where the story of the slow building up of molecules leaves off.

  The account of the origin of life that I shall give is necessarily speculative; by definition, nobody was around to see what happened. There are a number of rival theories, but they all have certain features in common. The simplified account I shall give is probably not too far from the truth.

  We do not know what chemical raw materials were abundant on earth before the coming of life, but among the plausible possibilities are water, carbon dioxide, methane, and ammonia: all simple compounds known to be present on at least some of the other planets in our solar system. Chemists have tried to imitate the chemical condition
s of the young earth. They have put these simple substances in a flask and supplied a source of energy such as ultraviolet light or electric sparks-artificial simulation of primordial lightning. After a few weeks of this, something interesting is usually found inside the flask: a weak brown soup containing a large number of molecules more complex than the ones originally put in. In particular, amino acids have been found-the building blocks of proteins, one of the two great classes of biological molecules. Before these experiments were done, naturally-occurring amino acids would have been thought of as diagnostic of the presence of life. If they had been detected on, say Mars, life on that planet would have seemed a near certainty. Now, however, their existence need imply only the presence of a few simple gases in the atmosphere and some volcanoes, sunlight, or thundery weather. More recently, laboratory simulations of the chemical conditions of earth before the coming of life have yielded organic substances called purines and pyrimidines. These are building blocks of the genetic molecule, DNA itself

  Processes analogous to these must have given rise to the 'primeval soup' which biologists and chemists believe constituted the seas some three to four thousand million years ago. The organic substances became locally concentrated, perhaps in drying scum round the shores, or in tiny suspended droplets. Under the further influence of energy such as ultraviolet light from the sun, they combined into larger molecules. Nowadays large organic molecules would not last long enough to be noticed: they would be quickly absorbed and broken down by bacteria or other living creatures. But bacteria and the rest of us are late-comers, and in those days large organic molecules could drift unmolested through the thickening broth.

  At some point a particularly remarkable molecule was formed by accident. We will call it the Replicator. It may not necessarily have been the biggest or the most complex molecule around, but it had the extraordinary property of being able to create copies of itself This may seem a very unlikely sort of accident to happen. So it was. It was exceedingly improbable. In the lifetime of a man, things that are that improbable can be treated for practical purposes as impossible. That is why you will never win a big prize on the football pools. But in our human estimates of what is probable and what is not, we are not used to dealing in hundreds of millions of years. If you filled in pools coupons every week for a hundred million years you would very likely win several jackpots.

  Actually a molecule that makes copies of itself is not as difficult to imagine as it seems at first, and it only had to arise once. Think of the replicator as a mould or template. Imagine it as a large molecule consisting of a complex chain of various sorts of building block molecules. The small building blocks were abundantly available in the soup surrounding the replicator. Now suppose that each building block has an affinity for its own kind. Then whenever a building block from out in the soup lands up next to a part of the replicator for which it has an affinity, it will tend to stick there. The building blocks that attach themselves in this way will automatically be arranged in a sequence that mimics that of the replicator itself. It is easy then to think of them joining up to form a stable chain just as in the formation of the original replicator. This process could continue as a progressive stacking up, layer upon layer. This is how crystals are formed. On the other hand, the two chains might split apart, in which case we have two replicators, each of which can go on to make further copies.

  A more complex possibility is that each building block has affinity not for its own kind, but reciprocally for one particular other kind.

  Then the replicator would act as a template not for an identical copy, but for a kind of 'negative', which would in its turn re-make an exact copy of the original positive. For our purposes it does not matter whether the original replication process was positive-negative or positive-positive, though it is worth remarking that the modem equivalents of the first replicator, the DNA molecules, use positive-negative replication. What does matter is that suddenly a new kind of 'stability' came into the world. Previously it is probable that no particular kind of complex molecule was very abundant in the soup, because each was dependent on building blocks happening to fall by luck into a particular stable configuration. As soon as the replicator was born it must have spread its copies rapidly throughout the seas, until the smaller building block molecules became a scarce resource, and other larger molecules were formed more and more rarely.

  So we seem to arrive at a large population of identical replicas. But now we must mention an important property of any copying process: it is not perfect. Mistakes will happen. I hope there are no misprints in this book, but if you look carefully you may find one or two. They will probably not seriously distort the meaning of the sentences, because they will be 'first generation' errors. But imagine the days before printing, when books such as the Gospels were copied by hand. All scribes, however careful, are bound to make a few errors, and some are not above a little wilful 'improvement'. If they all copied from a single master original, meaning would not be greatly perverted. But let copies be made from other copies, which in their turn were made from other copies, and errors will start to become cumulative and serious. We tend to regard erratic copying as a bad thing, and in the case of human documents it is hard to think of examples where errors can be described as improvements. I suppose the scholars of the Septuagint could at least be said to have started something big when they mistranslated the Hebrew word for 'young woman' into the Greek word for 'virgin', coming up with the prophecy: 'Behold a virgin shall conceive and bear a son .. .' Anyway, as we shall see, erratic copying in biological replicators can in a real sense give rise to improvement, and it was essential for the progressive evolution of life that some errors were made. We do not know how accurately the original replicator molecules made their copies. Their modem descendants, the DNA molecules, are astonishingly faithful compared with the most high-fidelity human copying process, but even they occasionally make mistakes, and it is ultimately these mistakes that make evolution possible. Probably the original replicators were far more erratic, but in any case we may be sure that mistakes were made, and these mistakes were cumulative.

  As mis-copyings were made and propagated, the primeval soup became filled by a population not of identical replicas, but of several varieties of replicating molecules, all 'descended' from the same ancestor. Would some varieties have been more numerous than others? Almost certainly yes. Some varieties would have been inherently more stable than others. Certain molecules, once formed, would be less likely than others to break up again. These types would become relatively numerous in the soup, not only as a direct logical consequence of their 'longevity', but also because they would have a long time available for making copies of themselves. Replicators of high longevity would therefore tend to become more numerous and, other things being equal, there would have been an 'evolutionary trend' towards greater longevity in the population of molecules.

  But other things were probably not equal, and another property of a replicator variety that must have had even more importance in spreading it through the population was speed of replication or 'fecundity'. If replicator molecules of type A make copies of themselves on average once a week while those of type B make copies of themselves once an hour, it is not difficult to see that pretty soon type A molecules are going to be far outnumbered, even if they 'live' much longer than B molecules. There would therefore probably have been an 'evolutionary trend' towards higher 'fecundity' of molecules in the soup. A third characteristic of replicator molecules which would have been positively selected is accuracy of replication. If molecules of type X and type Y last the same length of time and replicate at the same rate, but A makes a mistake on average every tenth replication while Y makes a mistake only every hundredth replication, Y will obviously become more numerous. The A contingent in the population loses not only the errant 'children' themselves, but also all their descendants, actual or potential.

  If you already know something about evolution, you may find something slightly paradoxical ab
out the last point. Can we reconcile the idea that copying errors are an essential prerequisite for evolution to occur, with the statement that natural selection favours high copying-fidelity? The answer is that although evolution may seem, in some vague sense, a 'good thing', especially since we are the product of it, nothing actually 'wants' to evolve. Evolution is something that happens, willy-nilly, in spite of all the efforts of the replicators (and nowadays of the genes) to prevent it happening. Jacques Monod made this point very well in his Herbert Spencer lecture, after wryly remarking: 'Another curious aspect of the theory of evolution is that everybody thinks he understands it!'

  To return to the primeval soup, it must have become populated by stable varieties of molecule; stable in that either the individual molecules lasted a long time, or they replicated rapidly, or they replicated accurately. Evolutionary trends toward these three kinds of stability took place in the following sense: if you had sampled the soup at two different times, the later sample would have contained a higher proportion of varieties with high longevity/fecundity/copying-fidelity. This is essentially what a biologist means by evolution when he is speaking of living creatures, and the mechanism is the same-natural selection.