The Selfish Gene Page 25
A relationship of mutual benefit between members of different species is called mutualism or symbiosis. Members of different species often have much to offer each other because they can bring different 'skills' to the partnership. This kind of fundamental asymmetry can lead to evolutionarily stable strategies of mutual cooperation. Aphids have the right sort of mouthparts for pumping up plant sap, but such sucking mouthparts are no good for self-defence. Ants are no good at sucking sap from plants, but they are good at fighting. Ant genes for cultivating and protecting aphids have been favoured in ant gene-pools. Aphid genes for cooperating with the ants have been favoured in aphid gene-pools.
Symbiotic relationships of mutual benefit are common among animals and plants. A lichen appears superficially to be an individual plant like any other. But it is really an intimate symbiotic union between a fungus and a green alga. Neither partner could live
without the other. If their union had become just a bit more intimate we would no longer have been able to tell that a lichen was a double organism at all. Perhaps then there are other double or multiple organisms which we have not recognized as such. Perhaps even we ourselves?
Within each one of our cells there are numerous tiny bodies called mitochondria. The mitochondria are chemical factories, responsible for providing most of the energy we need. If we lost our mitochondria we would be dead within seconds. Recently it has been plausibly argued that mitochondria are, in origin, symbiotic bacteria who joined forces with our type of cell very early in evolution. Similar suggestions have been made for other small bodies within our cells. This is one of those revolutionary ideas which it takes time to get used to, but it is an idea whose time has come. I speculate that we shall come to accept the more radical idea that each one of our genes is a symbiotic unit. We are gigantic colonies of symbiotic genes. One cannot really speak of 'evidence' for this idea, but, as I tried to suggest in earlier chapters, it is really inherent in the very way we think about how genes work in sexual species. The other side of this coin is that viruses may be genes who have broken loose from 'colonies' such as ourselves. Viruses consist of pure DNA (or a related self-replicating molecule) surrounded by a protein jacket. They are all parasitic. The suggestion is that they have evolved from 'rebel' genes who escaped, and now travel from body to body directly through the air, rather than via the more conventional vehicles-sperms and eggs. If this is true, we might just as well regard ourselves as colonies of viruses! Some of them cooperate symbiotically, and travel from body to body in sperms and eggs. These are the conventional 'genes'. Others live parasitically, and travel by whatever means they can. If the parasitic DNA travels in sperms and eggs, it perhaps forms the 'paradoxical' surplus of DNA which I mentioned in Chapter 3. If it travels through the air, or by other direct means, it is called 'virus' in the usual sense.
But these are speculations for the future. At present we are concerned with symbiosis at the higher level of relationships between many-celled organisms, rather than within them. The word symbiosis is conventionally used for associations between members of different species. But, now that we have eschewed the 'good of the species' view of evolution, there seems no logical reason to distinguish associations between members of different species as things apart from associations between members of the same species. In general, associations of mutual benefit will evolve if each partner can get more out than he puts in. This is true whether we are speaking of members of the same hyena pack, or of widely distinct creatures such as ants and aphids, or bees and flowers. In practice it may be difficult to distinguish cases of genuine two-way mutual benefit from cases of one-sided exploitation.
The evolution of associations of mutual benefit is theoretically easy to imagine if the favours are given and received simultaneously, as in the case of the partners who make up a lichen. But problems arise if there is a delay between the giving of a favour and its repayment. This is because the first recipient of a favour may be tempted to cheat and refuse to pay it back when his turn comes. The resolution of this problem is interesting and is worth discussing in detail. I can do this best in terms of a hypothetical example.
Suppose a species of bird is parasitized by a particularly nasty kind of tick which carries a dangerous disease. It is very important that these ticks should be removed as soon as possible. Normally an individual bird can pull off its owns ticks when preening itself. There is one place, however-the top of the head-which it cannot reach with its own bill. The solution to the problem quickly occurs to any human. An individual may not be able to reach his own head, but nothing is easier than for a friend to do it for him. Later, when the friend is parasitized himself, the good deed can be paid back. Mutual grooming is in fact very common in both birds and mammals.
This makes immediate intuitive sense. Anybody with conscious foresight can see that it is sensible to enter into mutual back-scratching arrangements. But we have learnt to beware of what seems intuitively sensible. The gene has no foresight. Can the theory of selfish genes account for mutual back-scratching, or 'reciprocal altruism', where there is a delay between good deed and repayment? Williams briefly discussed the problem in his 1966 book, to which I have already referred. He concluded, as had Darwin, that delayed reciprocal altruism can evolve in species that are capable of recognizing and remembering each other as individuals. Trivers, in 1971, took the matter further. When he wrote, he did not have available to him Maynard Smith's concept of the evolutionarily stable strategy. If he had, my guess is that he would have made use of it, for it provides a natural way to express his ideas. His reference to the 'Prisoner's Dilemma'-a favourite puzzle in game theory- shows that he was already thinking along the same lines.
Suppose B has a parasite on the top of his head. A pulls it off him. Later, the time comes when A has a parasite on his head. He naturally seeks out B in order that B may pay back his good deed. B simply turns up his nose and walks off. B is a cheat, an individual who accepts the benefit of other individuals' altruism, but who does not pay it back, or who pays it back insufficiently. Cheats do better than indiscriminate altruists because they gain the benefits without paying the costs. To be sure, the cost of grooming another individual's head seems small compared with the benefit of having a dangerous parasite removed, but it is not negligible. Some valuable energy and time has to be spent.
Let the population consist of individuals who adopt one of two strategies. As in Maynard Smith's analyses, we are not talking about conscious strategies, but about unconscious behaviour programs laid down by genes. Call the two strategies Sucker and Cheat. Suckers groom anybody who needs it, indiscriminately. Cheats accept altruism from suckers, but they never groom anybody else, not even somebody who has previously groomed them. As in the case of the hawks and doves, we arbitrarily assign pay-off points. It does not matter what the exact values are, so long as the benefit of being groomed exceeds the cost of grooming. If the incidence of parasites is high, any individual sucker in a population of suckers can reckon on being groomed about as often as he grooms. The average pay-off for a sucker among suckers is therefore positive. They all do quite nicely in fact, and the word sucker seems inappropriate. But now suppose a cheat arises in the population. Being the only cheat, he can count on being groomed by everybody else, but he pays nothing in return. His average pay-off is better than the average for a sucker. Cheat genes will therefore start to spread through the population. Sucker genes will soon be driven to extinction. This is because, no matter what the ratio in the population, cheats will always do better than suckers. For instance, consider the case when the population consists of 50 per cent suckers and 50 per cent cheats. The average pay-off for both suckers and cheats will be less than that for any individual in a population of 100 per cent suckers. But still, cheats will be doing better than suckers because they are getting all the benefits-such as they are-and paying nothing back. When the proportion of cheats reaches 90 per cent, the average pay-off for all individuals will be very low: many of both types may by now be
dying of the infection carried by the ticks. But still the cheats will be doing better than the suckers. Even if the whole population declines toward extinction, there will never be any time when suckers do better than cheats. Therefore, as long as we consider only these two strategies, nothing can stop the extinction of the suckers and, very probably, the extinction of the whole population too.
But now, suppose there is a third strategy called Grudger. Grudgers groom strangers and individuals who have previously groomed them. However, if any individual cheats them, they remember the incident and bear a grudge: they refuse to groom that individual in the future. In a population of grudgers and suckers it is impossible to tell which is which. Both types behave altruistically towards everybody else, and both earn an equal and high average pay-off. In a population consisting largely of cheats, a single grudger would not be very successful. He would expend a great deal of energy grooming most of the individuals he met-for it would take time for him to build up grudges against all of them. On the other hand, nobody would groom him in return. If grudgers are rare in comparison with cheats, the grudger gene will go extinct. Once the grudgers manage to build up in numbers so that they reach a critical proportion, however, their chance of meeting each other becomes sufficiently great to off-set their wasted effort in grooming cheats. When this critical proportion is reached they will start to average a higher pay-off than cheats, and the cheats will be driven at an accelerating rate towards extinction. When the cheats are nearly extinct their rate of decline will become slower, and they may survive as a minority for quite a long time. This is because for any one rare cheat there is only a small chance of his encountering the same grudger twice: therefore the proportion of individuals in the population who bear a grudge against any given cheat will be small.
I have told the story of these strategies as though it were intuitively obvious what would happen. In fact it is not all that obvious, and I did take the precaution of simulating it on a computer to check that intuition was right. Grudger does indeed turn out to be an evolutionarily stable strategy against sucker and cheat, in the sense that, in a population consisting largely of grudgers, neither cheat nor sucker will invade. Cheat is also an ESS, however, because a population consisting largely of cheats will not be invaded by either grudger or sucker. A population could sit at either of these two ESSs. In the long term it might flip from one to the other. Depending on the exact values of the pay-offs-the assumptions in the simulation were of course completely arbitrary-one or other of the two stable states will have a larger 'zone of attraction' and will be more likely to be attained. Note incidentally that, although a population of cheats may be more likely to go extinct than a population of grudgers, this in no way affects its status as an ESS. If a population arrives at an ESS that drives it extinct, then it goes extinct, and that is just too bad.
It is quite entertaining to watch a computer simulation that starts with a strong majority of suckers, a minority of grudgers that is just above the critical frequency, and about the same-sized minority of cheats. The first thing that happens is a dramatic crash in the population of suckers as the cheats ruthlessly exploit them. The cheats enjoy a soaring population explosion, reaching their peak just as the last sucker perishes. But the cheats still have the grudgers to reckon with. During the precipitous decline of the suckers, the grudgers have been slowly decreasing in numbers, taking a battering from the prospering cheats, but just managing to hold their own. After the last sucker has gone and the cheats can no longer get away with selfish exploitation so easily, the grudgers slowly begin to increase at the cheats' expense. Steadily their population rise gathers momentum. It accelerates steeply, the cheat population crashes to near extinction, then levels out as they enjoy the privileges of rarity and the comparative freedom from grudges which this brings. However, slowly and inexorably the cheats are driven out of existence, and the grudgers are left in sole possession. Paradoxically, the presence of the suckers actually endangered the grudgers early on in the story because they were responsible for the temporary prosperity of the cheats.
By the way, my hypothetical example about the dangers of not being groomed is quite plausible. Mice kept in isolation tend to develop unpleasant sores on those parts of their heads that they cannot reach. In one study, mice kept in groups did not suffer in this way, because they licked each others' heads. It would be interesting to test the theory of reciprocal altruism experimentally and it seems that mice might be suitable subjects for the work.
Trivers discusses the remarkable symbiosis of the cleaner-fish. Some fifty species, including small fish and shrimps, are known to make their living by picking parasites off the surface of larger fish of other species. The large fish obviously benefit from being cleaned, and the cleaners get a good supply of food. The relationship is symbiotic. In many cases the large fish open their mouths and allow cleaners right inside to pick their teeth, and then to swim out through the gills which they also clean. One might expect that a large fish would craftily wait until he had been thoroughly cleaned, and then gobble up the cleaner. Yet instead he usually lets the cleaner swim off unmolested. This is a considerable feat of apparent altruism because in many cases the cleaner is of the same size as the large fish's normal prey.
Cleaner-fish have special stripy patterns and special dancing displays which label them as cleaners. Large fish tend to refrain from eating small fish who have the right kind of stripes, and who approach them with the right kind of dance. Instead they go into a trance-like state and allow the cleaner free access to their exterior and interior. Selfish genes being what they are, it is not surprising that ruthless, exploiting cheats have cashed in. There are species of small fish that look just like cleaners and dance in the same kind of way in order to secure safe conduct into the vicinity of large fish. When the large fish has gone into its expectant trance the cheat, instead of pulling off a parasite, bites a chunk out of the large fish's fin and beats a hasty retreat. But in spite of the cheats, the relationship between fish cleaners and their clients is mainly amicable and stable. The profession of cleaner plays an important part in the daily life of the coral reef community. Each cleaner has his own territory', and large fish have been seen queuing up for attention like customers at a barber's shop. It is probably this site-tenacity that makes possible the evolution of delayed reciprocal-altruism in this case. The benefit to a large fish of being able to return repeatedly to the same 'barber's shop', rather than continually searching for a new one, must outweigh the cost of refraining from eating the cleaner. Since cleaners are small, this is not hard to believe. The presence of cheating cleaner-mimics probably indirectly endangers the bonafide cleaners by setting up a minor pressure on large fish to eat stripy dancers. Site-tenacity on the part of genuine cleaners enables customers to find them and to avoid cheats.
A long memory and a capacity for individual recognition are well developed in man. We might therefore expect reciprocal altruism to have played an important part in human evolution. Trivers goes so far as to suggest that many of our psychological characteristics- envy, guilt, gratitude, sympathy etc.-have been shaped by natural selection for improved ability to cheat, to detect cheats, and to avoid being thought to be a cheat. Of particular interest are 'subtle cheats' who appear to be reciprocating, but who consistently pay back slightly less than they receive. It is even possible that man's swollen brain, and his predisposition to reason mathematically, evolved as a mechanism of ever more devious cheating, and ever more penetrating detection of cheating in others. Money is a formal token of delayed reciprocal altruism.
There is no end to the fascinating speculation that the idea of reciprocal altruism engenders when we apply it to our own species. Tempting as it is, I am no better at such speculation than the next man, and I leave the reader to entertain himself.
Memes: the new replicators
So far, I have not talked much about man in particular, though I have not deliberately excluded him either. Part of the reason I have used the te
rm 'survival machine' is that 'animal' would have left out plants and, in some people's minds, humans. The arguments I have put forward should, prima facie, apply to any evolved being. If a species is to be excepted, it must be for good particular reasons. Are there any good reasons for supposing our own species to be unique? I believe the answer is yes.
Most of what is unusual about man can be summed up in one word: 'culture'. I use the word not in its snobbish sense, but as a scientist uses it. Cultural transmission is analogous to genetic transmission in that, although basically conservative, it can give rise to a form of evolution. Geoffrey Chaucer could not hold a conversation with a modern Englishman, even though they are linked to each other by an unbroken chain of some twenty generations of Englishmen, each of whom could speak to his immediate neighbours in the chain as a son speaks to his father. Language seems to 'evolve' by non-genetic means, and at a rate which is orders of magnitude faster than genetic evolution.